Gel’fand-Zetlin Basis and Clebsch-Gordan Coefficients for Covariant Representations of the Lie superalgebra gl(m|n)

نویسنده

  • N. I. Stoilova
چکیده

A Gel’fand-Zetlin basis is introduced for the irreducible covariant tensor representations of the Lie superalgebra gl(m|n). Explicit expressions for the generators of the Lie superalgebra acting on this basis are determined. Furthermore, Clebsch-Gordan coefficients corresponding to the tensor product of any covariant tensor representation of gl(m|n) with the natural representation V ([1, 0, . . . , 0]) of gl(m|n) with highest weight (1,0,. . . ,0) are computed. Both results are steps for the explicit construction of the parastatistics Fock space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations of the Lie Superalgebra gl(1|n) and Wigner Quantum Oscillators

An explicit construction of all finite-dimensional irreducible representations of the Lie superalgebra gl(1|n) in a Gel’fand-Zetlin basis is given. The notion of Wigner Quantum Oscillators (WQOs) is recalled. The star type I representations of gl(1|n) are physical state spaces of the WQO. These solutions have remarkable properties following from the spectrum of the Hamiltonian and of the positi...

متن کامل

On the eigenvalue problem for arbitrary odd elements of the Lie superalgebra gl(1|n) and applications

In a Wigner quantum mechanical model, with a solution in terms of the Lie superalgebra gl(1|n), one is faced with determining the eigenvalues and eigenvectors for an arbitrary selfadjoint odd element of gl(1|n) in any unitary irreducible representation W . We show that the eigenvalue problem can be solved by the decomposition of W with respect to the branching gl(1|n) → gl(1|1)⊕gl(n−1). The eig...

متن کامل

Computing Generalized Racah and Clebsch-Gordan Coefficients for U(N) groups

After careful introduction and discussion of the concepts involved, procedures are developed to compute Racah and Clebsch-Gordan coefficients for general r-fold tensor products of the U(N) groups. In the process, the multiplicity of a given irreducible representation (irrep) in the direct sum basis is computed, and generalized Casimir operators are introduced to uniquely label the multiple irre...

متن کامل

Representations of the Lie Superalgebra gl(1|n) in a Gel’fand-Zetlin Basis and Wigner Quantum Oscillators

An explicit construction of all finite-dimensional irreducible representations of the Lie superalgebra gl(1|n) in a Gel’fand-Zetlin basis is given. Particular attention is paid to the so-called star type I representations (“unitary representations”), and to a simple class of representations V (p), with p any positive integer. Then, the notion of Wigner Quantum Oscillators (WQOs) is recalled. In...

متن کامل

N ov 2 00 7 Basic Hypergeometric Functions and Covariant Spaces for Even Dimensional Representations of

Representations of the quantum superalgebra U q [osp(1/2)] and their relations to the basic hypergeometric functions are investigated. We first establish Clebsch-Gordan decomposition for the superalgebra U q [osp(1/2)] in which the representations having no classical counterparts are incorporated. Formulae for these Clebsch-Gordan coefficients are derived, and it is observed that they may be ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010